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Abstract—This paper describes the Semiglobal Matching (SGM) stereo method. It uses a pixelwise, Mutual Information (MI)-based

matching cost for compensating radiometric differences of input images. Pixelwise matching is supported by a smoothness constraint

that is usually expressed as a global cost function. SGM performs a fast approximation by pathwise optimizations from all directions. The

discussion also addresses occlusion detection, subpixel refinement, and multibaseline matching. Additionally, postprocessing steps for

removing outliers, recovering from specific problems of structured environments, and the interpolation of gaps are presented. Finally,

strategies for processing almost arbitrarily large images and fusion of disparity images using orthographic projection are proposed. A

comparison on standard stereo images shows that SGM is among the currently top-ranked algorithms and is best, if subpixel accuracy is

considered. The complexity is linear to the number of pixels and disparity range, which results in a runtime of just 1-2 seconds on typical

test images. An in depth evaluation of the MI-based matching cost demonstrates a tolerance against a wide range of radiometric

transformations. Finally, examples of reconstructions from huge aerial frame and pushbroom images demonstrate that the presented

ideas are working well on practical problems.

Index Terms—Stereo, mutual information, global optimization, multibaseline.

Ç

1 INTRODUCTION

ACCURATE dense stereo matching is an important require-
ment for many applications like 3D reconstruction. Most

difficult are often occlusions, object boundaries, and fine
structures, which can appear blurred. Matching is also
challenging due to low or repetitive textures, which are
typical for structured environments. Additional practical
problems originate from recording and illumination differ-
ences. Furthermore, fast calculations are often required,
either because of real-time applications or because of large
images or many images that have to be processed efficiently.

A comparison of current stereo algorithms is given on the
Middlebury Stereo Pages.1 It is based on the taxonomy of
Scharstein and Szeliski [1]. They distinguish between four
steps that most stereo methods perform, that is, matching cost
computation, cost aggregation, disparity computation/opti-
mization, and disparity refinement. Matching cost computa-
tion is very often based on the absolute, squared, or sampling
insensitive difference [2] of intensities or colors. Since these
costs are sensitive to radiometric differences, costs based on
image gradients are also used [3]. Mutual Information (MI)
has been introduced in computer vision [4] for handling
complex radiometric relationships between images. It has
been adapted for stereo matching [5], [6] and approximated
for faster computation [7].

Cost aggregation connects the matching costs within a
certain neighborhood. Often, costs are simply summed over a

fixed sized window at constant disparity [3], [5], [8], [9]. Some
methods additionally weight each pixel within the window
according to color similarity and proximity to the center pixel
[10], [11]. Another possibility is to select the neighborhood
according to segments of constant intensity or color [7], [12].

Disparity computation is done for local algorithms by
selecting the disparity with the lowest matching cost [5], [8],
[10], that is, winner takes all. Global algorithms typically skip
the cost aggregation step and define a global energy function
that includes a data term and a smoothness term. The former
sums pixelwise matching costs, whereas the latter supports
piecewise smooth disparity selection. Some methods use
more terms for penalizing occlusions [9], [13], alternatively
treating visibility [11], [12], [14], enforcing a left/right or
symmetric consistency between images [7], [11], [12], [14], or
weight the smoothness term according to segmentation
information [14]. The strategies for finding the minimum of
the global energy function differ. Dynamic programming
(DP) approaches [2], [15] perform the optimization in one
dimension for each scan line individually, which commonly
leads to streaking effects. This is avoided by tree-based DP
approaches [12], [16]. A two dimensional optimization is
reached by Graph Cuts [13] or Belief Propagation [3], [11],
[14]. Layered approaches [3], [9], [11] perform image
segmentation and model planes in disparity space, which
are iteratively optimized.

Disparity refinement is often done for removing peaks [17],
checking the consistency [8], [11], [12], interpolating gaps [17],
or increasing the accuracy by subpixel interpolation [1], [8].

Almost all of the currently top-ranked algorithms [2], [3],
[7], [9], [11], [12], [13], [14], [15] on the Tsukuba, Venus,
Teddy, and Cones data set [18] optimize a global energy
function. The complexity of most top-ranked algorithms is
usually high and can depend on the scene complexity [9].
Consequently, most of these methods have runtimes of
more than 20 sec [3], [12] to more than a minute [9], [10],
[11], [13], [14] on the test images.
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This paper describes the Semiglobal Matching (SGM)
method [19], [20], which calculates the matching cost
hierarchically by Mutual Information (Section 2.1). Cost
aggregation is performed as approximation of a global
energy function by pathwise optimizations from all direc-
tions through the image (Section 2.2). Disparity computation
is done by winner takes all and supported by disparity
refinements like consistency checking and subpixel inter-
polation (Section 2.3). Multibaseline matching is handled by
fusion of disparities (Section 2.4). Further disparity refine-
ments include peak filtering, intensity consistent disparity
selection, and gap interpolation (Section 2.5). Previously
unpublished is the extension for matching almost arbitrarily
large images (Section 2.6) and the fusion of several disparity
images using orthographic projection (Section 2.7). Section 3
shows results on standard test images, as well as previously
unpublished extensive evaluations of the MI-based matching
cost. Finally, two examples of 3D reconstructions from huge
aerial frame and pushbroom images are given.

2 Semiglobal Matching

The Semiglobal Matching (SGM) method is based on the idea
of pixelwise matching of Mutual Information and approx-
imating a global, 2D smoothness constraint by combining
many 1D constraints. The algorithm is described in distinct
processing steps. Some of them are optional, depending on
the application.

2.1 Pixelwise Matching Cost Calculation

Input images are assumed to have a known epipolar
geometry, but it is not required that they are rectified as
this may not always be possible. This is the case with
pushbroom images. A linear movement causes epipolar
lines to be hyperbolas [21], due to parallel projection in the
direction of movement and perspective projection ortho-
gonally to it. Nonlinear movements, as unavoidable in
aerial imaging, causes epipolar lines to be general curves
and images that cannot be rectified [22].

The matching cost is calculated for a base image pixel p
from its intensity Ibp and the suspected correspondence Imq

with q ¼ ebmðp; dÞ of the match image. The function
ebmðp; dÞ symbolizes the epipolar line in the match image
for the base image pixel p with the line parameter d. For
rectified images, with the match image on the right of the
base image, ebmðp; dÞ ¼ ½px � d; py�T with d as disparity.

An important aspect is the size and shape of the area that
is considered for matching. The robustness of matching is
increased with large areas. However, the implicit assump-
tion of constant disparity inside the area is violated at
discontinuities, which leads to blurred object borders and
fine structures. Certain shapes and techniques can be used
to reduce blurring, but it cannot be avoided [8]. Therefore,
the assumption of constant disparities in the vicinity of p is
discarded. This means that only the intensities Ibp and Imq

itself can be used for calculating the matching cost.
One choice of pixelwise cost calculation is the sampling

insensitive measure of Birchfield and Tomasi [2]. The cost
CBT ðp; dÞ is calculated as the absolute minimum difference
of intensities at p and q ¼ ebmðp; dÞ in the range of half a
pixel in each direction along the epipolar line.

Alternatively, the matching cost calculation can be based
on Mutual Information (MI) [4], which is insensitive to

recording and illumination changes. It is defined from the

entropy H of two images (that is, their information content),

as well as their joint entropy:

MII1;I2
¼ HI1

þHI2
�HI1;I2

: ð1Þ

The entropies are calculated from the probability dis-
tributions P of intensities of the associated images:

HI ¼ �
Z 1

0

PIðiÞ logPIðiÞdi; ð2Þ

HI1;I2
¼ �

Z 1

0

Z 1

0

PI1;I2
ði1; i2Þ logPI1;I2

ði1; i2Þdi1di2: ð3Þ

For well-registered images, the joint entropy HI1;I2
is low

because one image can be predicted by the other, which
corresponds to low information. This increases their Mutual
Information. In the case of stereo matching, one image needs
to be warped according to the disparity imageD for matching
the other image, such that corresponding pixels are at the
same location in both images, that is, I1 ¼ Ib and I2 ¼ fDðImÞ.

Equation (1) operates on full images and requires the
disparity image a priori. Both prevent the use of MI as
pixelwise matching cost. Kim et al. [6] transformed the
calculation of the joint entropy HI1;I2

into a sum over pixels
using Taylor expansion. It is referred to their paper for details
of the derivation. As a result, the joint entropy is calculated as
a sum of data terms that depend on corresponding intensities
of a pixel p:

HI1;I2
¼
X

p

hI1;I2
ðI1p; I2pÞ: ð4Þ

The data term hI1;I2
is calculated from the joint

probability distribution PI1;I2
of corresponding intensities.

The number of corresponding pixels is n. Convolution with
a 2D Gaussian (indicated by �gði; kÞ) effectively performs
Parzen estimation [6]:

hI1;I2
ði; kÞ ¼ � 1

n
logðPI1;I2

ði; kÞ � gði; kÞÞ � gði; kÞ: ð5Þ

The probability distribution of corresponding intensities
is defined with the operator T ½�, which is 1 if its argument is
true and 0, otherwise,

PI1;I2
ði; kÞ ¼ 1

n

X
p

T½ði; kÞ ¼ ðI1p; I2pÞ�: ð6Þ

The calculation is visualized in Fig. 1. The match image Im
is warped according to the initial disparity imageD. This can
be implemented by a simple lookup in image Im with
ebmðp; DpÞ for all pixels p. However, care should to be taken to
avoid possible double mappings due to occlusions in Im.
Calculation of P according to (6) is done by counting the
number of pixels of all combinations of intensities, divided by
the number of all correspondences. Next, according to (5),
Gaussian smoothing is applied by convolution. It has been
found that using a small kernel (that is, 7� 7) gives practically
the same results as larger kernels, but is calculated faster. The
logarithm is computed for each element of the result. Since the
logarithm of 0 is undefined, all 0 elements are replaced by a
very small number. Another Gaussian smoothing effectively
leads to a lookup table for the term hI1;I2

.
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Kim et al. argued that the entropy HI1
is constant and HI2

is almost constant as the disparity image merely redis-
tributes the intensities of I2. Thus, hI1;I2

ðI1p; I2pÞ serves as
cost for matching two intensities. However, if occlusions are
considered then some intensities of I1 and I2 do not have a
correspondence. These intensities should not be included in
the calculation, which results in nonconstant entropies HI1

and HI2
. Apart from this theoretical justification, it has been

found that including these entropies in the cost calculation
slightly improves object borders. Therefore, it is suggested
to calculate these entropies analog to the joint entropy:

HI ¼
X

p

hIðIpÞ; ð7aÞ

hIðiÞ ¼ �
1

n
logðPIðiÞ � gðiÞÞ � gðiÞ: ð7bÞ

The probability distributionPI must not be calculated over
the whole images I1 and I2 but only over the corresponding
parts (otherwise, occlusions would be ignored and HI1

and
HI2

would be almost constant). That is easily done by just
summing the corresponding rows and columns of the joint
probability distribution, that is, PI1

ðiÞ ¼
P

k PI1;I2
ði; kÞ. The

resulting definition of Mutual Information is

MII1;I2
¼
X

p

miI1;I2
ðI1p; I2pÞ; ð8aÞ

miI1;I2
ði; kÞ ¼ hI1

ðiÞ þ hI2
ðkÞ � hI1;I2

ði; kÞ: ð8bÞ

This leads to the definition of the MI matching cost:

CMIðp; dÞ ¼ �miIb;fDðImÞðIbp; ImqÞ; ð9aÞ
q ¼ ebmðp; dÞ: ð9bÞ

The remaining problem is that the disparity image is
required for warping Im before miðÞ can be calculated. Kim
et al. suggested an iterative solution, which starts with a
random disparity image for calculating the cost CMI . This
cost is then used for matching both images and calculating
a new disparity image, which serves as the base of the next
iteration. The number of iterations is rather low (for
example, 3), because even wrong disparity images (for
example, random) allow a good estimation of the prob-
ability distribution P , due to a high number of pixels. This
solution is well suited for iterative stereo algorithms like
Graph Cuts [6], but it would increase the runtime of
noniterative algorithms unnecessarily.

Since a rough estimate of the initial disparity is sufficient
for estimatingP , a fast correlation base method could be used
in the first iterations. In this case, only the last iteration would
be done by a more accurate and time consuming method.
However, this would involve the implementation of two

different stereo methods. Utilizing a single method appears
more elegant.

Therefore, a hierarchical calculation is suggested, which
recursively uses the (up-scaled) disparity image, which has
been calculated at half resolution, as the initial disparity. If the
overall complexity of the algorithm is OðWHDÞ (that is,
width � height � disparity range), then the runtime at half
resolution is reduced by factor 23 ¼ 8. Starting with a random
disparity image at a resolution of 1/16 and initially calculat-
ing three iterations increases the overall runtime by the factor

1þ 1

23
þ 1

43
þ 1

83
þ 3

1

163
� 1:14: ð10Þ

Thus, the theoretical runtime of the hierarchically calcu-
lated CMI would be just 14 percent slower than that of CBT ,
ignoring the overhead of MI calculation and image scaling. It
is noteworthy that the disparity image of the lower resolution
level is used only for estimating the probability distributionP
and calculating the costs CMI of the higher resolution level.
Everything else is calculated from scratch to avoid passing
errors from lower to higher resolution levels.

An implementation of the hierarchical MI computation
(HMI) would collect all alleged correspondences defined by
an initial disparity (that is, up-scaled from previous
hierarchical level or random in the beginning). From the
correspondences, the probability distribution P is calcu-
lated according to (6). The size of P is the square of the
number of intensities, which is constant (for example,
256� 256). The subsequent operations consist of Gaussian
convolutions of P and calculating the logarithm. The
complexity depends only on the collection of alleged
correspondences due to the constant size of P . Thus,
OðWHÞ with W as image width and H as image height.

2.2 Cost Aggregation

Pixelwise cost calculation is generally ambiguous and
wrong matches can easily have a lower cost than correct
ones, due to noise, and so forth. Therefore, an additional
constraint is added that supports smoothness by penalizing
changes of neighboring disparities. The pixelwise cost and
the smoothness constraints are expressed by defining the
energy EðDÞ that depends on the disparity image D:

EðDÞ ¼
X

p

�
Cðp; DpÞ þ

X
q2Np

P1T½jDp �Dqj ¼ 1�

þ
X
q2Np

P2T½jDp �Dqj > 1�
�
:

ð11Þ

The first term is the sum of all pixel matching costs for the
disparities of D. The second term adds a constant penalty P1

for all pixels q in the neighborhood Np of p, for which the
disparity changes a little bit (that is, 1 pixel). The third term
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Fig. 1. Calculation of the MI-based matching cost. Values are scaled linearly for visualization. Darker points have larger values than brighter points.



adds a larger constant penalty P2, for all larger disparity
changes. Using a lower penalty for small changes permits an
adaptation to slanted or curved surfaces. The constant
penalty for all larger changes (that is, independent of their
size) preserves discontinuities [23]. Discontinuities are often
visible as intensity changes. This is exploited by adapting P2

to the intensity gradient, that is, P2 ¼ P 02
jIbp�Ibqj for neighboring

pixels p and q in the base image Ib. However, it has always to
be ensured that P2 � P1.

The problem of stereo matching can now be formulated as
finding the disparity image D that minimizes the energy
EðDÞ. Unfortunately, such a global minimization, that is, in
2D, is NP-complete for many discontinuity preserving
energies [23]. In contrast, the minimization along individual
image rows, that is, in 1D, can be performed efficiently in
polynomial time using DP [2], [15]. However, DP solutions
easily suffer from streaking [1], due to the difficulty of relating
the 1D optimizations of individual image rows to each other
in a 2D image. The problem is that very strong constraints in
one direction, that is, along image rows, are combined with
none or much weaker constraints in the other direction, that
is, along image columns.

This leads to the new idea of aggregating matching costs in
1D from all directions equally. The aggregated (smoothed)
cost Sðp; dÞ for a pixel p and disparity d is calculated by
summing the costs of all 1D minimum cost paths that end in
pixel p at disparity d, as shown in Fig. 2. These paths through
disparity space are projected as straight lines into the base
image but as nonstraight lines into the corresponding match
image, according to disparity changes along the paths. It is
noteworthy that only the cost of the path is required and not
the path itself.

The cost L0rðp; dÞ along a path traversed in the direction r
of the pixel p at disparity d is defined recursively as

L0rðp; dÞ ¼Cðp; dÞ þminðL0rðp� r; dÞ;
L0rðp� r; d� 1Þ þ P1;

L0rðp� r; dþ 1Þ þ P1;

min
i
L0rðp� r; iÞ þ P2Þ:

ð12Þ

The pixelwise matching cost C can be either CBT or CMI .
The remainder of the equation adds the lowest cost of the
previous pixel p� r of the path, including the appropriate
penalty for discontinuities. This implements the behavior of
(11) along an arbitrary 1D path. This cost does not enforce
the visibility or ordering constraint, because both concepts
cannot be realized for paths that are not identical to
epipolar lines. Thus, the approach is more similar to Scan
line Optimization [1] than traditional DP solutions.

The values of L0 permanently increase along the path,
which may lead to very large values. However, (12) can be

modified by subtracting the minimum path cost of the
previous pixel from the whole term:

Lrðp; dÞ ¼Cðp; dÞ þminðLrðp� r; dÞ;
Lrðp� r; d� 1Þ þ P1;

Lrðp� r; dþ 1Þ þ P1;

min
i
Lrðp� r; iÞ þ P2Þ �min

k
Lrðp� r; kÞ:

ð13Þ

This modification does not change the actual path
through disparity space, since the subtracted value is
constant for all disparities of a pixel p. Thus, the position
of the minimum does not change. However, the upper limit
can now be given as L � Cmax þ P2.

The costs Lr are summed over paths in all directions r.
The number of paths must be at least eight and should be 16
for providing a good coverage of the 2D image. In the latter
case, paths that are not horizontal, vertical, or diagonal are
implemented by going one step horizontal or vertical
followed by one step diagonally:

Sðp; dÞ ¼
X

r

Lrðp; dÞ: ð14Þ

The upper limit for S is easily determined as S �
16ðCmax þ P2Þ, for 16 paths.

An efficient implementation would precalculate the
pixelwise matching costs Cðp; dÞ, down scaled to 11-bit
integer values, that is, Cmax < 211, by a factor s if necessary
as in the case of MI values. Scaling to 11-bit guarantees that
the aggregated costs in subsequent calculations do not
exceed the 16-bit limit. All costs are stored in a 16-bit array
C½� of size W �H �D. Thus, C½p; d� ¼ sCðp; dÞ. A second
16-bit integer array S½� of the same size is used for storing
the aggregated cost values. The array is initialized by
0 values. The calculation starts for each direction r at all
pixels b of the image border with Lrðb; dÞ ¼ C½b; d�. The
path is traversed in forward direction according to (13). For
each visited pixel p along the path, the costs Lrðp; dÞ are
added to the values S½b; d� for all disparities d.

The calculation of (13) requires OðDÞ steps at each pixel,
since the minimum cost of the previous pixel, for example,
mink Lrðp� r; kÞ, is constant for all disparities of a pixel and
can be precalculated. Each pixel is visited exactly 16 times,
which results in a total complexity of OðWHDÞ. The regular
structure and simple operations, that is, additions and
comparisons, permit parallel calculations using integer-
based SIMD2 assembly language instructions.

2.3 Disparity Computation

The disparity imageDb that corresponds to the base image Ib
is determined as in local stereo methods by selecting for each
pixel p the disparity d that corresponds to the minimum cost,
that is, mind S½p; d�. For subpixel estimation, a quadratic curve
is fitted through the neighboring costs, that is, at the next
higher and lower disparity, and the position of the minimum
is calculated. Using a quadratic curve is theoretically justified
only for correlation using the sum of squared differences.
However, it is used as an approximation due to the simplicity
of calculation. This supports fast computation.

The disparity image Dm that corresponds to the match
image Im can be determined from the same costs by traversing
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the epipolar line that corresponds to the pixel q of the match
image. Again, the disparity d is selected, which corresponds
to the minimum cost, that is, mind S½embðq; dÞ; d�. However,
the cost aggregation step does not treat the base and match
images symmetrically. Slightly better results can be expected,
if Dm is calculated from scratch, that is, by performing
pixelwise matching and aggregation again, but with Im as
base and Ib as match image. It depends on the application
whether or not an increased runtime is acceptable for slightly
better object borders. Outliers are filtered from Db and Dm

using a median filter with a small window, that is, 3� 3.
The calculation of Db, as well as Dm, permits the

determination of occlusions and false matches by performing
a consistency check. Each disparity of Db is compared to its
corresponding disparity ofDm. The disparity is set to invalid
ðDinvÞ if both differ:

Dp ¼
Dbp if jDbp �Dmqj � 1;

Dinv otherwise:

�
ð15aÞ

q ¼ ebmðp; DbpÞ: ð15bÞ

The consistency check enforces the uniqueness constraint,
by permitting one to one mappings only. The disparity
computation and consistency check require visiting each
pixel at each disparity a constant number of times. Thus, the
complexity of this step is again OðWHDÞ.

A summary of all processing steps of the core SGM method
including hierarchical calculation of MI is given in Fig. 3.

2.4 Multibaseline Matching

The algorithm could be extended for multibaseline match-
ing by calculating a combined pixelwise matching cost of
correspondences between the base image and all match
images. However, the occlusion problem would have to be
solved on the pixelwise matching level, that is, before
aggregation, which is very unstable. Therefore, multibase-
line matching is performed by pairwise matching between
the base and all match images individually. The consistency
check (Section 2.3) is used after pairwise matching for
eliminating wrong matches at occlusions and many other
mismatches. Finally, the resulting disparity images are
fused by considering individual scalings.

Let the disparity Dk be the result of matching the base
image Ib against a match image Imk. The disparities of the
imagesDk are scaled differently, according to some factor tk.
This factor is linear to the length of the baseline between Ib
and Imk if all images are rectified against each other, that is, if
all images are projected onto a common plane that has the
same distance to all optical centers. Thus, disparities are
normalized by

Dkp

tk
.

Fusion of disparity values is performed by calculating
the weighted mean of disparities using the factors tk as
weights. Possible outliers are discarded by considering only

those disparities that are within a 1 pixel interval around
the median of all disparity values for a certain pixel:

Dp ¼
P

k2Vp
DkpP

k2Vp
tk

; ð16aÞ

Vp ¼ kj Dkp

tk
�med

i

Dip

ti

����
���� � 1

tk

� �
: ð16bÞ

This solution increases robustness due to the median, as
well as accuracy due to the weighted mean. Additionally, if
enough match images are available, a certain minimum size
of the set Vp can be enforced for increasing the reliability of
the resulting disparities. Pixel that do not fulfill the criteria
are set to invalid. If hierarchical computation is performed
for MI-based matching then the presented fusion of
disparity images is performed within each hierarchical
level for computing the disparity image of the next level.

An implementation would pairwise match the base
image against all k match images and combine them by
visiting each pixel once. Thus, the overall complexity of all
steps that are necessary for multibaseline matching is
OðKWHDÞ with K as the number of match images.

2.5 Disparity Refinement

The resulting disparity image can still contain certain kinds
of errors. Furthermore, there are generally areas of invalid
values that need to be recovered. Both can be handled by
postprocessing of the disparity image.

2.5.1 Removal of Peaks

Disparity images can contain outliers, that is, completely
wrongdisparities,dueto lowtexture, reflections,noise,andso
forth. They usually show up as small patches of disparity that
is very different to the surrounding disparities, that is, peaks,
as shown in Fig. 4. It depends on the scene, what sizes of small
disparity patches can also represent valid structures. Often, a
threshold can be predefined on their size such that smaller
patches are unlikely to represent valid scene structure.

For identifying peaks, the disparity image is segmented
[24] by allowing neighboring disparities within one seg-
ment to vary by one pixel, considering a 4-connected image
grid. The disparities of all segments below a certain size are
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Fig. 3. Summary of processing steps of Sections 2.1, 2.2, and 2.3.

Fig. 4. Possible errors in disparity images (black is invalid).



set to invalid [17]. This kind of simple segmentation and
peak filtering can be implemented in OðWHÞ steps.

2.5.2 Intensity Consistent Disparity Selection

In structured indoor environments, it often happens that
foreground objects are in front of a low or untextured
background, for example, wall, as shown in Fig. 4. The
energy function EðDÞ, as shown in (11), does not include a
preference on the location of a disparity step. Thus,EðDÞdoes
not differentiate between placing a disparity step correctly
just next to a foreground object or a bit further away within an
untextured background. Section 2.2 suggested adapting the
cost P2 according to the intensity gradient. This helps placing
the disparity step correctly just next to a foreground object,
because this location coincides with an intensity gradient in
contrast to a location within an untextured area.

However, SGM applies the energy function not in 2D over
the whole image but along individual 1D paths from all
directions, which are summed. If an untextured area is
encountered along a 1D path, a disparity change is only
preferred if matching of textured areas on both sides of the
untextured area requires it. Untextured areas may have
different shapes and sizes and can extend beyond image
borders, as quite common for walls in indoor scenes (Fig. 4).
Depending on the location and direction of 1D paths, they
may encounter texture of foreground and background objects
around an untextured part, in which case a correct disparity
step would be expected. They may also encounter either
foreground or background texture or leave the image with the
untextured area in which cases no disparity step would be
placed. Summing all those inconsistent paths may easily lead
to fuzzy discontinuities around foreground objects in front of
untextured background.

It is noteworthy, that this problem is a special case that
only applies to certain scenes in structured environments.
However, it appears important enough for presenting a
solution. First, some assumptions are made:

1. Discontinuities in the disparity image do not occur
within untextured areas.

2. On the same physical surface as the untextured area
is also some texture visible.

3. The surface of the untextured area can be approxi-
mated by a plane.

The first assumption is mostly correct, as depth disconti-
nuities usually cause at least some visual change in
intensities. Otherwise, the discontinuity would be undetect-
able. The second assumption is necessary as the disparity of
an absolutely untextured background surface would be
indeterminable. The third assumption is the weakest. Its
justification is that untextured surfaces with varying distance
usually appear with varying intensities. Thus, piecewise
constant intensity can be treated as piecewise planar.

The identification of untextured areas is done by a fixed
bandwidth Mean Shift Segmentation [25] on the intensity
image Ib. The radiometric bandwidth �r is set to P1, which
is usually 4. Thus, intensity changes below the smoothness
penalty are treated as noise. The spatial bandwidth �s is set
to a rather low value for fast processing (that is, 5).
Furthermore, all segments that are smaller than a certain
threshold (that is, 100 pixels) are ignored, because small
untextured areas are expected to be handled well by SGM.

As described above, the expected problem is that
discontinuities are placed fuzzily within untextured areas.
Thus, untextured areas are expected to contain incorrect
disparities of the foreground object but also correct
disparities of the background, as long as the background
surface contains some texture, that is, assumption 2. This
leads to the realization that some disparities within each
segment Si should be correct. Thus, several hypotheses for
the correct disparity of Si can be identified by segmenting
the disparity within each segment Si. This is done by simple
segmentation, as also discussed in Section 2.5.1, that is, by
allowing neighboring disparities within one segment to
vary by one pixel. This fast segmentation results in several
segments Sik for each segment Si.

Next, the surface hypothesesFik are created by calculating
the best fitting planes through the disparities of Sik. The
choice for planes is based on assumption 3. Very small
segments, that is,� 12 pixel, are ignored, as it is unlikely that
such small patches belong to the correct hypothesis. Then,
each hypothesis is evaluated withinSi by replacing all pixel of
Si by the surface hypothesis and calculatingEik as defined in
(11) for all unoccluded pixel of Si. A pixel p is occluded, if
another pixel with higher disparity maps to the same pixel q
in the match image. This detection is performed by first
mapping p into the match image by q ¼ ebmðp; D0pÞ. Then, the
epipolar line of q in the base image embðq; dÞ is followed for
d > D0p. Pixel p is occluded if the epipolar line passes a pixel
with a disparity larger than d.

For each constant intensity segment Si the surface
hypothesis Fik with the minimum cost Eik is chosen. All
disparities within Si are replaced by values on the chosen
surface for making the disparity selection consistent to the
intensities of the base image, that is, fulfilling Assumption 1:

Fi ¼ Fik0 with k0 ¼ argmin
k

Eik; ð17aÞ

D0p ¼
FiðpÞ if p 2 Si
Dp otherwise:

�
ð17bÞ

The presented approach is similar to some other
methods [7], [9], [11] as it uses image segmentation and
plane fitting for refining an initial disparity image. In
contrast to other methods, the initial disparity image is due
to SGM already quite accurate so that only untextured areas
above a certain size are modified. Thus, only critical areas
are tackled without the danger of corrupting probably well-
matched areas. Another difference is that disparities of the
considered areas are selected by considering a small
number of hypotheses that are inherent in the initial
disparity image. There is no time consuming iteration.

The complexity of fixed bandwidth Mean Shift Segmen-
tation of the intensity image and the simple segmentation of
the disparity image is linear in the number of pixels.
Calculating the best fitting planes involves visiting all
segmented pixels. Testing of all hypotheses requires visiting
all pixels of all segments for all hypotheses (that is,
maximum N). Additionally, the occlusion test requires
going through at most D disparities for each pixel.

Thus, the upper bound of the complexity is OðWHDNÞ.
However, segmented pixels are usually just a fraction of the
whole image and the maximum number of hypothesesN for a
segment is commonly small and often just 1. In the latter case,
it is not even necessary to calculate the cost of the hypothesis.
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2.5.3 Discontinuity Preserving Interpolation

The consistency check of Section 2.3, as well as fusion of
disparity images of Section 2.4 or peak filtering of
Section 2.5.1 may invalidate some disparities. This leads
to holes in the disparity image, as shown in black in Fig. 4,
which need to be interpolated for a dense result.

Invalid disparities are classified into occlusions and
mismatches. The interpolation of both cases must be
performed differently. Occlusions must not be interpolated
from the occluder but only from the occludee to avoid
incorrect smoothing of discontinuities. Thus, an extrapola-
tion of the background into occluded regions is necessary.
In contrast, holes due to mismatches can be smoothly
interpolated from all neighboring pixels.

Occlusions and mismatches can be distinguished as part
of the left/right consistency check. Fig. 5 shows that the
epipolar line of the occluded pixel p1 goes through the
discontinuity that causes the occlusion and does not
intersect the disparity function Dm. In contrast, the epipolar
line of the mismatch p2 intersects with Dm. Thus, for each
invalidated pixel, an intersection of the corresponding
epipolar line with Dm is sought, for marking it as either
occluded or mismatched.

For interpolation purposes, mismatched pixel areas that
are direct neighbors of occluded pixels are treated as
occlusions, because these pixels must also be extrapolated
from valid background pixels. Interpolation is performed by
propagating valid disparities through neighboring invalid
disparity areas. This is done similarly to SGM along paths
from eight directions. For each invalid pixel, all eight
values vpi are stored. The final disparity imageD0 is created by

D0p ¼
seclowivpi if p is occluded;
medi vpi if p is mismatched;
Dp otherwise:

8<
: ð18Þ

The first case ensures that occlusions are interpolated from
the lower background by selecting the second lowest value,
whereas the second case emphasizes the use of all informa-
tion without a preference to foreground or background. The
median is used instead of the mean for maintaining
discontinuities in cases where the mismatched area is at an
object border.

The presented interpolation method has the advantage
that it is independent of the used stereo matching method.
The only requirements are a known epipolar geometry and
the calculation of the disparity images for the base and
match image for distinguishing between occlusions and
mismatches.

Finally, median filtering can be useful for removing
remaining irregularities and additionally smoothes the
resulting disparity image. The complexity of interpolation
is linear to the number of pixels, that is, OðWHÞ, as there is
a constant number of operations for each invalid pixel.

2.6 Processing of Huge Images

The SGM method requires temporary memory for storing
pixelwise matching costs C½�, aggregated costs S½�, disparity
images before fusion, and so forth. The size of temporary
memory depends either on the image size W 	H, the
disparity range D, or both as in the case of C½� and S½�. Thus,
even moderate image sizes of 1 MPixel with disparity ranges
of several 100 pixel require large temporary arrays that can
exceed the available memory. The proposed solution is to
divide the base image into tiles, computing the disparity of
each tile individually as described in Sections 2.1 until 2.3 and
merging the tiles together into the full disparity image before
multibaseline fusion (Section 2.4).

Tiles are chosen overlapping, because the cost aggrega-
tion step (Section 2.2) can only use paths from one side for
pixels near tile borders, which leads to lower matching
accuracy or even mismatches. This can especially be critical
at low textured areas near tile borders. Merging of tiles is
done by calculating a weighted mean of disparities from all
tiles at overlapping areas. The weights are chosen such that
pixels near the tile border are ignored, and those further
away are blended linearly, as shown in Fig. 6. The tile size is
chosen as large as possible such that all required temporary
arrays just fit into the available main memory. Thus, the
available memory automatically determines the internally
used tile size.

This strategy allows matching of larger images. However,
there are some technologies like aerial pushbroom cameras
that can produce single images of 1 billion pixel or more [22].
Thus, it may be impossible to even load two full images into
the main memory not to mention matching of them. For such
cases, additionally to the discussed internal tiling, an external
tiling of the base image is suggested, for example, with
overlapping tiles of size 3; 000� 3; 000 pixels. Every base
image tile together with the disparity range and the known
camera geometry immediately define the corresponding
parts of the match images. All steps including multibaseline
fusion (Section 2.4) and, optionally, postprocessing (Sec-
tion 2.5) are performed, and the resulting disparity is stored
for each tile individually. Merging of external tiles is done in
the same way as merging of internal tiles.

Depending on the kind of scene, it is likely that the
disparity range that is required for each tile is just a fraction of
the disparity range of the whole images. Therefore, an
automatic disparity range reduction in combination with
HMI-based matching is suggested. The full disparity range is
applied for matching at the lowest resolution. Thereafter, a
refined disparity range is determined from the resulting
disparity image. The range is extended by a certain fixed
amount to account for small structures that are possibly
undetected while matching in low resolution. The refined up-
scaled disparity range is used for matching at the next higher
resolution.
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Fig. 5. Distinguishing between occluded and mismatched pixels.
Fig. 6. Definition of weights for merging overlapping tiles Ti, Tk.



The internal and external tiling mechanism allow stereo
matching of almost arbitrarily large images. Another
advantage of external tiling is that all tiles can be computed
in parallel on different computers.

2.7 Fusion of Disparity Images

Disparity images can be seen as 2.5D representations of the
scene geometry. The interpretation of disparity images
always requires the corresponding geometrical camera
model. Furthermore, in multiple image configurations,
several disparity images from different viewpoints may have
been computed for representing a scene. It is often desirable to
fuse the information of all disparity images into one consistent
representation of the scene. The optimal scene representation
depends on the locations and viewing directions of all
cameras. An important special case, for example, for aerial
imaging [22], is that the optical centers of all cameras are
approximately in a plane, and the orientations of all cameras
are approximately the same. In this case, an orthographic
2.5D projection onto a common plane can be done.

The common plane is chosen parallel to the optical centers
of all cameras. A coordinate systemRo,To is defined such that
the origin is in the plane, and the z-axis is orthogonal to the
plane. Thex,y-plane is divided into equally spaced cells. Each
disparity image is transformed separately into orthographic
projection by reconstructing all pixels, transforming them
usingRo, To, and storing the z-values in the cells in which the
transformed points fall into. The change to orthographic
projection can cause some points to occlude others. This is
considered by always keeping the value that is closest to the
camera in case of double mappings. After transforming each
disparity image individually, the resulting orthographic
projections are fused by selecting the median of all values
that fall into each cell (Fig. 8). This is useful for eliminating
remaining outliers.

It is advisable not to interpolate missing disparities in
individual disparity images (Section 2.5.3) before perform-
ing fusion, because missing disparities may be filled in from
other views. This is expected to be more accurate than using
interpolated values. Furthermore, the orthographic repro-
jection can lead to new holes that have to be interpolated.
Thus, interpolation is required anyway. However, after
orthographic projection, the information about occlusions
and mismatches that is used for pathwise interpolation
(Section 2.5.3) is lost. Therefore, a different method is
suggested for interpolating orthographic 2.5D height data.

First, the height data is segmented in the same way as
described in Section 2.5.1 by allowing height values of
neighboring grid cells within one segment to vary by a
certain predefined amount. Each segment is considered to be
a physical surface. Holes can exist within or between
segments. The former are filled by Inverse Distance Weighted
(IDW) interpolation from all valid pixels just next to the hole.
The latter case is handled by only considering valid pixels of
the segment whose pixel have the lowest mean compared to
the valid bordering pixel of all other segments next to the hole.
This strategy performs smooth interpolation but maintains
height discontinuities by extrapolating the background.
Using IDW instead of pathwise interpolation is computa-
tionally more expensive, but it is performed only once on the
fused result and not on each disparity image individually.

3 EXPERIMENTAL RESULTS

The SGM method has been evaluated extensively on
common stereo test image sets, as well as real images.

3.1 Evaluation on Middlebury Stereo Images

Fig. 7 shows the left images of four stereo image pairs [1], [18].
This image set is used in an ongoing comparison of stereo
algorithms on the Middlebury Stereo Pages. The image sets
of Venus, Teddy, and Cones consist of nine multibaseline
images. For stereo matching, the image number 2 is used as
the left image and the image number 6 as the right image.
This is different to an earlier publication [19] but consistent
with the procedure of the new evaluation on Middlebury
Stereo Pages. The disparity range is 16 pixel for the Tsukuba
pair, 32 pixel for the Venus pair, and 64 pixel for the Teddy
and Cones pair.

Disparity images have been computed in two different
configurations. The first configuration called SGM, uses the
basic steps like cost calculation using HMI, cost aggrega-
tion, and disparity computation (Sections 2.1, 2.2, and 2.3).
Furthermore, small disparity peaks where removed (Sec-
tion 2.5.1) and gaps interpolated (Section 2.5.3). The second
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Fig. 7. The Tsukuba (384� 288), Venus (484� 383), Teddy (450� 375), and Cones (450� 375) stereo test images [1], [18].

Fig. 8. Orthographic reprojection of disparity images and fusion.



configuration is called C-SGM, which uses the same steps as
SGM but, additionally, the intensity consistent disparity
selection (Section 2.5.2). All parameters have been selected
for the best performance and kept constant. The threshold
of the disparity peak filter has been lowered for C-SGM,
because intensity consistent disparity selection helps elim-
inating peaks, if they are in untextured areas.

Fig. 9 shows the results of SGM and C-SGM. Differences
can be best seen on the right side of the Teddy image. SGM
produces foreground disparities between the arm and the
leg of the Teddy, because there are no straight paths from
this area to structured parts of the background. In contrast,
C-SGM recovers the shape of the Teddy correctly. The
mismatches on the left of Teddy are due to repetitive
texture and are not filtered by C-SGM, because the disparity
peak filter threshold had been lowered as described above,
for a better overall performance.

The disparity images are numerically evaluated by
counting the disparities that differ by more than a certain
threshold from the ground truth. Only pixels that are
unoccluded according to the ground truth are compared.
The result is given as percentage of erroneous pixels. Table 1
is a reproduction of the upper part of the new evaluation at
the Middlebury Stereo Pages. A standard threshold of 1 pixel
has been used for the left table. Both, SGM and C-SGM are
among the best performing stereo algorithms at the upper

part of the table. C-SGM performs better, because it recovers
from errors at untextured background areas. Lowering the
threshold to 0.5 pixel makes SGM and C-SGM the top-
performing algorithms, as shown in Table 1b. The reason
seams to be a better subpixel performance.

SGM and C-SGM have been prepared for working with
unrectified images with known epipolar geometry by defin-
ing a function that calculates epipolar lines point by point.
This is a processing time overhead for rectified images but
permits working on pushbroom images that cannot be
rectified [22]. The most time consuming cost aggregation
step has been implemented using Single Instruction Multiple
Data (SIMD) assembly language commands, that is, SSE2
instruction set. The processing time on the Teddy pair was
1.8 seconds for SGM and 2.7 seconds for C-SGM on a 2.2 GHz
Opteron CPU. This is much faster than most other methods of
the comparison.

3.2 Evaluation of MI as Matching Cost Function

MI-based matching has been discussed in Section 2.1 for
compensating radiometric differences between the images
while matching. Such differences are minimal in carefully
prepared test images as those in Fig. 7, but they often occur in
practice. Several transformations have been tested on the
four image pairs in Fig. 7. The left image has been kept
constant while the right image has been transformed. The
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Fig. 9. Disparity images calculated by SGM (top) and C-SGM (bottom), which includes the intensity consistent disparity selection postprocessing

step.

TABLE 1
Comparison Using Standard Threshold of (a) 1 Pixel and (b) 0.5 Pixel from October 2006



matching cost has been calculated by sampling insensitive
absolute difference of intensities (BT), iteratively calculated
MI, and HMI. The mean error over the four pairs is used for
the evaluation.

Figs. 10a and 10b show the result of globally scaling
intensities linearly or nonlinearly. BT breaks down very
quickly, while the performance of MI and HMI is almost
constant. They break down only due to the severe loss of
image information when transformed intensities are stored
into 8 bit. Fig. 10c shows the effect of adding Gaussian noise.
MI and HMI are affected but perform better than BT for high
noise levels. Ten dB means that the noise level is about 1

3 rd of
the signal level.

Thus, global transformations are well handled by MI and
HMI. The next test scales the left and right image halves
differently for simulating a more complex case with two
different radiometric mappings within one image. This may
happen, if the illumination changes in a part of the image.
Fig. 11a demonstrates the effect. The result is shown in

Figs. 10d and 10e. Again, BT breaks down very quickly,
whereas MI and HMI are almost constant. Fig. 10f shows
the results of decreasing the intensity linearly from the
image center to the border. This is a locally varying
transformation, which mimics a vignetting effect that is
often found in camera lenses (Fig. 11b). MI and HMI have
more problems than in the other experiments but compen-
sate the effect much better than BT, especially for large s,
which can be expected in practice.

The matching costs have also been tested on the Art data
set, which is a courtesy of Daniel Scharstein. The data set
offers stereo images that have been taken with different
exposures and under different illuminations, that is, with
changed position of the light source, as shown in Figs. 12a
and 12b. There is also a ground truth disparity available.
The errors that occur when matching images of different
exposures are shown in Fig. 12c. It can be seen that BT fails
completely, whereas HMI is nearly unaffected by the severe
changes of exposure. Fig. 12d gives the result of matching
images that are taken under different illuminations. This
time, also HMI is affected but to a lower extent than BT. It
should be noted that illumination changes in these images
are very severe and cause many local changes.

BT-based matching takes 1.5 seconds on the Teddy
images, whereas MI-based matching requires three itera-
tions, which takes 4 seconds. This is 164 percent slower than
BT. The suggested HMI-based matching needs 1.8 seconds,
which is just 18 percent slower than BT. The values are
similar for the other image pairs.

All of the experiments demonstrate that the performance
of MI and HMI is almost identical. Both tolerate global
changes like different exposure times without any pro-
blems. Local changes like vignetting are also handled quite
well. Changes in lighting of the scene seem to be tolerated
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Fig. 10. Effect of applying radiometric changes or adding noise to the right match images using SGM with different matching cost calculations.
(a) Global scale change, that is, I 0 ¼ sI. (b) Global gamma change. (c) Adding Gaussian noise. (d) Different scaling of image halves. (e) Different
scaling of image halves. (f) Linear down-scaling from center.

Fig. 11. Examples of (a) local scaling of intensities with s1 ¼ 0:3 and

s2 ¼ 0:7 and (b) linear down-scaling from the image center with s ¼ 0:5.



to some extent. In contrast, BT breaks down very quickly.

Thus, using BT is only advisable on images that are

carefully taken under exactly the same conditions. Since

HMI performed better in all experiments and just requires a

small, constant fraction of the total processing time, it is

always recommended for stereo matching.

3.3 Evaluation of Postprocessing

Postprocessing is necessary for fixing errors that the stereo

algorithm has caused and providing a dense disparity

image without gaps. The effects of the proposed postpro-

cessing steps are shown in Fig. 13.

Fig. 13a shows raw result of SGM, that is, Sections 2.1, 2.2,
and 2.3. Peak filtering, that is, Section 2.5.1, removes some
isolated small patches of different disparity as given in
Fig.13b.Figs.13cand13dshowthesegmentationresultsof the
intensity and disparity image that are used by the intensity
consistent disparity selection method, that is, Section 2.5.2.
The result in Fig. 13e shows that disparities in critical
untextured areas have been recovered. Fig. 13f gives the
classificationresult for interpolation.Occlusionsareblackand
other mismatches are gray. The result of pathwise interpola-
tion, that is, Section 2.5.3, is presented in Fig. 13g. Finally,
Fig. 13h gives the errors when comparing Fig. 13g against
the ground truth with the standard threshold of 1 pixel.
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Fig. 12. Matching of images with different exposure and lighting. The Art data set is a courtesy of Daniel Scharstein. (a) Left images of Art data set
with varying exposure. (b) Left images of Art data set with varying illuminations. (c) Result of matching images with different exposure. (d) Result of
matching images with different illuminations.

Fig. 13. Demonstration of the effect of the proposed postprocessing steps on the Teddy images. (a) Result after basic SGM. (b) Result after peak
filtering. (c) Low textured segments. (d) Disparity segments. (e) Intensity Consistent Sel. (f) Occlusions (black) and mismatches (gray). (g) Result
after interpolation. (h) Errors against ground truth.



3.4 Example 1: Reconstruction from Aerial Full
Frame Images

The SGM method has been designed for calculating accurate
Digital Surface Models (DSM) from high-resolution aerial
images. Graz in Austria has been captured by Vexcel Imaging
with an UltraCam, which has a 54 degrees field of view and
offers panchromatic images of 11; 500� 7; 500 pixels, that is,
86 MPixel. Color and infrared are captured as well, but at a
lower resolution. A block of 3� 15 images has been provided
as courtesy of Vexcel Imaging Graz. The images were
captured 900 m above ground with an overlap of approxi-
mately 85percent inflight direction and75percent orthogonal
to it. The ground resolution was 8 cm/pixel. The image block
was photogrammetrically oriented by bundle adjustment
using GPS/INS data that was recorded during the flight, as
well as ground control points.

The SGM method using HMI as matching cost has been
applied with the same parameters as used for the compar-
ison in Section 3.1, except for postfiltering. The peak filter
threshold has been increased to 300 pixel. Furthermore, the
intensity consistent disparity selection is not used as aerial
images do typically not include any untextured background
surfaces. This may also be due to the quality of images, that
is, sharpness. Finally, interpolation has not been done. The
disparity range of this data set is up to 2,000 pixel. The size
of the images and the disparity range required internal and
external tiling, as well as dynamic disparity range adapta-
tion as described in Section 2.6.

A small part of one image is given in Fig. 14a. Fig. 14b
shows the result of matching against one image to the left and
Fig. 14c the result of multibaseline matching against six
surrounding images. It can be seen that the matching of two
images results already in a good disparity image. Matching
against all surrounding images helps to fill in gaps that are
caused by occlusions and removing remaining mismatches.
After matching, all images are fused into an orthographic
projection and interpolated, as described in Section 2.7. The
result can be seen in Fig. 14d. The roof structures and
boundaries appear very precise. Matching of one image
against six neighbors took around 5.5 hours on one 2.2 GHz
Opteron CPU. The 22 CPUs of a processing cluster were used
for parallel matching of the 45 images. The orthographic
reprojection and true orthoimage generation requires a few
more hours but only on one CPU.

Fig. 15 presents 3D reconstructions from various view-
points. The texture is taken from UltraCam images as well.
Mapping texture onto all walls of buildings is possible due to
the relatively large field of view of the camera and high
overlap of images. The given visualizations are high-quality

results of fully automatic processing steps without any
manual cleanup.

3.5 Example 2: Reconstruction from Aerial
Pushbroom Images

The SGM method has also been applied to images of the
High Resolution Stereo Camera (HRSC) that has been built
by the Institute of Planetary Research at the German
Aerospace Center (DLR), Berlin, for stereo mapping of
Mars. The camera is currently operating onboard the
European Space Agency (ESA) probe Mars-Express that is
orbiting Mars. Another version of the camera is used
onboard airplanes for mapping the Earth’s cities and
landscapes from flight altitudes between 1,500-5,000 m
above ground [27]. The camera has nine 12-bit sensor arrays
with 12,000 pixels, which are mounted orthogonally to the
flight direction and look downwards in different angles up
to 20.5 degrees. Five of the sensor arrays are panchromatic
and used for stereo matching. The other four capture red,
green, blue, and infrared. The position and orientation of
the camera is continuously measured by a GPS/INS system.
The ground resolution of the images is 15-20 cm/pixel.

The SGM method has been applied to HRSC images that
have been radiometrically and geometrically corrected at the
Institute of Planetary Research at DLR Berlin. The result are
2D images from the data captured by each of the nine sensor
arrays. However, despite geometric rectification, epipolar
lines are in general not straight, as this is not possible for aerial
pushbroom images. Thus, epipolar lines are calculated
during image matching as described previously [22].

SGM using HMI as matching cost has been applied again
as in Section 3.4 with the same parameters. Matching is
performed between the five panchromatic images of each
flight strip individually. Each of these images can have a size
of up to several gigabytes, which requires internal and
external tiling, as well as dynamic disparity range adaptation,
as described in Section 2.6. Matching between strips is not
done as the overlap of strips is typically less than 50 percent.

The fully automatic method has been implemented on a
cluster of 40 2.0 GHz and 2.2 GHz Opteron CPUs. The
cluster is able to process an area of 400 km2 in a resolution
of 20 cm/pixel within three to four days, resulting in
around 50 GB of height and image data. A total of more
than 20,000 km2 has been processed within one year.

Fig. 16 shows a reconstruction of a small part of one scene.
The visualizations were calculated fully automatically,
including mapping of the wall texture from HRSC images.
It should be noted that the ground resolution of the HRSC
images is almost three times lower than that of the UltraCam
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Fig. 14. SGM matching results from aerial UltraCam images of Graz. The input image block is a courtesy of Vexcel Imaging Graz. (a) Small part of

aerial image. (b) Matching against one image. (c) Matching against six images. (d) Orthographic reprojection.



images in Fig. 15. Nevertheless, a good quality of reconstruc-

tion with sharp object boundaries can be achieved on huge

amounts of data. This demonstrates that the proposed ideas

are working very stable on practical problems.

4 CONCLUSION

The SGM stereo method has been presented. Extensive tests

show that it is tolerant against many radiometric changes

that occur in practical situations due to an HMI-based

matching cost. Matching is done accurately on a pixel level

by pathwise optimization of a global cost function. The
presented postfiltering methods optionally help by tackling
remaining individual problems. An extension for matching
huge images has been presented, as well as a strategy for
fusing disparity images using orthographic projection.

The method has been evaluated on the Middlebury
Stereo Pages. It has been shown that SGM can compete with
the currently best stereo methods. It even performs superior
to all other methods when the threshold for comparing the
results against ground truth is lowered from 1 to 0.5 pixel,
which shows an excellent subpixel performance. All of this
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Fig. 15. Untextured and textured 3D reconstructions from aerial UltraCam images of Graz.

Fig. 16. Untextured and textured reconstructions from images of the DLR HRSC of Ettal.



is done with a complexity of OðWHDÞ that is rather
common for local methods. The runtime is just 1-2 seconds
on typical test images, which is much lower than that of
most other methods with comparable results. Experiences
of applying SGM on huge amounts of aerial full frame and
pushbroom images demonstrate the practical applicability
of all presented ideas. All of these advantages make SGM a
prime choice for solving many practical stereo problems.
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